作者单位
摘要
1 景德镇陶瓷大学,江西 景德镇 333403
2 中国科学院上海硅酸盐研究所,高性能陶瓷与超细微结构国家重点实验室,上海 200050
磷基负极材料具有较高的理论容量和中等的氧化还原电位,且原料在储量和成本方面有极大的优势,因此其在钠、锂离子电池负极材料方面具有重要的应用前景。但红磷由于极低的电子电导率和过大的体积膨胀导致电化学活性衰减速度快,循环性能差,而黑磷导电性可达105 S/m,结构致密导致其本征倍率性能较差,两者的缺点限制了单质磷作为负极材料的实际应用。通过向单质磷中引入少量金属元素可以形成性质独特的金属富磷化物MPx (x≥2),一方面可以通过金属元素电子注入实现金属富磷化物电子导电性的跨越式提升,另一方面还可以形成较为空旷的晶体结构提供更快的反应动力学并有效地抑制体积膨胀,因此兼具高容量和优异电子/离子输运特性的金属富磷化物MPx是极具潜力的钠、锂离子电池负极材料。主要综述了金属富磷化物材料的组成结构特点,重点阐述金属富磷化物在储能机理和改性策略方面的最新进展。
金属富磷化物 负极材料 锂离子电池 钠离子电池 metal phosphorus-rich phosphides anode materials lithium ion batteries sodium ion batteries 
硅酸盐学报
2023, 51(6): 1626
作者单位
摘要
1 1.南京理工大学 材料科学与工程学院, 新型显示材料与器件工信部重点实验室, 南京210094
2 2.中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海200050
3 3.中国科学院大学 材料科学与光电技术学院, 北京100049
4 4.北京大学 化学与分子工程学院, 稀土材料化学及应用国家重点实验室, 北京 100871
人类发展的历史, 也是能源变革的历史, 人类社会的每一次技术革命无不伴随着对能源认识、开发和利用的创新与进步。当下, 我国已经成为全球排名第一的能源生产和消费大国, 并且两个总量还在不断攀升。能源技术是解决对传统化石能源过度依赖及环境污染等问题, 构建合理的社会能源结构, 推进可持续发展, 实现“双碳”减排的关键手段。2020年, 我国以太阳能、风能为代表的可再生能源增长达到全世界的三分之一, 发展迅速。这其中, 能源材料是能源工业和能源技术体系中涉及的特殊材料, 在实现清洁能源的转化和利用, 发展新能源技术, 以及支撑整个能源系统中扮演着核心角色。 近年来, 能源材料在诸多领域取得了广泛而持续的发展, 包括二次电池、燃料电池、太阳能电池、超级电容器、光电催化、含能材料等。比如, 以高镍三元材料(NCM)为代表的新型锂离子电池正极材料, 正引领着新一代汽车动力电池技术的发展, 以支持更快的充电速度、更久的服役寿命和更长的行驶里程[1-4]。不断提升的储能需求也催生了一系列新型电池技术, 如锂硫[5]、锂空气[6]电池体系, 以及固态电池[7]技术等, 多种技术并行发展。它们在能量密度、经济性、安全性等方面各具优势, 但也存在如锂硫电池中多硫化锂造成的穿梭效应, 锂空气电池中放电产物易堵塞基底的孔道以及固态电池中电解质的电导率不佳等诸多问题, 其技术完善和产业化推动强烈依赖于电极和电解质材料的创新设计和结构优化。同时, 为了提高非化石能源占一次能源的消费比, 太阳能电池作为新能源技术的翘楚, 被寄予厚望。其中, 以钙钛矿为代表的第三代太阳能电池技术已获得与单晶硅相媲美的光电转换效率[8], 让人们对光伏产业的未来充满了期待, 然而其对温、湿、光、氧的敏感性和不稳定性[9], 以及在材料制备过程中难以回避污染环境的含Pb原料, 种种问题仍需从材料的底层设计中寻求解决之道。此外, 以Pt、Pd等贵金属为代表的传统催化剂材料不断优化, 以及开发的新型非贵金属、非金属催化剂, 正逐步提高燃料电池的能量转换效率, 降低其技术成本, 并已取得了一定程度的商业化应用[10-11]。同时, 涉及如CO2还原、固氮等过程的光、电催化新材料与新技术, 也为可再生能源的存储及利用形式提供新的出口, 为2030年完成碳达峰、2060年实现碳中和提供技术支撑[12-13]在可持续发展的时代大背景以及竞争激烈的国际前沿科技大环境下, 我国在能源材料的理化机理探索、功能发现、精准设计制备以及先进器件组装等方面做出了许多开创性的工作。为集中展示我国学者在相关领域的研究成果, 推动学术交流, 激发社会各界对能源材料的兴趣, 南京理工大学联合中国科学院上海硅酸盐研究所、华中科技大学等单位组织出版“能源材料专辑”, 专辑收录了能源材料相关的最新研究论文和综述文章, 涉及钙钛矿太阳能电池、半透明太阳能电池、锂离子电池、镁电池、锂硫电池、热电、二氧化碳裂解等。期望该专辑能够抛砖引玉, 为促进我国能源材料的科学研究和学科发展提供有益参考。
无机材料学报
2022, 37(2): 113
赵伟 1,2徐阳 1,2万颖杰 1,2蔡天逊 1,2[ ... ]黄富强 1,2,*
作者单位
摘要
1 1.中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
2 2.中国科学院大学 材料科学与光电技术学院, 北京 100049
金属氰胺化合物Mx(NCN)y作为类氧硫族化合物, 是一类新兴的无机功能材料。准线性[NCN]2-阴离子赋予其空旷和具有孔道的晶体结构、独特的电子结构和新奇的物化性质, 金属氰胺化合物在固态发光、光/电催化及电化学储能等诸多领域展现出应用前景, 近年来逐渐成为研究热点。本文简要回顾了金属氰胺化合物的研究历史, 概述了金属氰胺化合物的晶体结构及物化性质, 总结了常见合成方法及策略, 探讨了金属氰胺化合物在电化学储能领域的应用, 重点论述了其作为锂钠离子电池新型负极材料的电化学性能及存储机制。
金属氰胺化合物 晶体结构 合成方法 电化学储能 锂钠离子电池 综述 metal cyanamides/carbodiimides crystal structure synthetic method electrochemical energy storage lithium/sodium ion battery review 
无机材料学报
2021, 37(2): 140
孙鹏 1,2张绍宁 1,3毕辉 1董武杰 1黄富强 1,3,4,*
作者单位
摘要
1 1.中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
2 2.中国科学院大学 材料科学与光电技术学院, 北京 100049
3 3.上海科技大学 物理科学与技术学院, 上海 200031
4 4.北京大学 化学与分子工程学院, 稀土材料化学及应用国家重点实验室, 北京 100871
碳材料是极具潜力的超级电容器电极材料, 但是其容量较低。异质原子掺杂, 尤其是氮掺杂, 是大幅度提高碳材料电化学性能的有效方法。但是在碳材料中实现高含量的活性氮掺杂仍极具挑战。本研究通过Si-O-Si网络和氧化铝之间的相互作用成功调节碳材料的掺氮种类及其含量。除此之外, 通过调节前驱体组成, 碳材料的结构可以从珊瑚状转变为三维结构。在反应中, 氧化物中的氧原子可以和碳材料中氮原子成键, 氮原子不易逃离, 从而实现高含量氮掺杂(5.29at%@1000 ℃)。另一方面, 相互作用使碳材料孔体积增大(1.78 m3·g-1)和孔径分布加宽(0.5~60 nm)。因此, 获得的富氮掺杂碳材料具有302 F·g-1@1 A·g-1的高容量和177 Fg-1@120 A·g-1的杰出倍率性能。此独特的固氮方法是一种有潜力的制备高性能超级电容器电极材料的策略。
碳材料 氮原子固定 相互作用 形貌设计 超级电容器 carbon material nitrogen fixation interaction morphology design supercapacitor 
无机材料学报
2021, 36(7): 766
周帆 1,2毕辉 1黄富强 1,2,3,*
作者单位
摘要
1 1.中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
2 2.上海科技大学 物理科学与技术学院, 上海 200031
3 3.北京大学 化学与分子工程学院, 稀土材料化学及应用国家重点实验室, 北京 100871
活性炭因具有高比表面积和丰富的孔结构而被广泛应用于吸附水处理中的污染物。稻壳具有独特的组成和微观结构, 是制备活性炭的优质碳源。以稻壳为原料, 利用过饱和KOH溶液的预活化和活化双重作用, 在不同温度下制备出超高比表面积活性炭。随着活化温度的升高, 活性炭的比表面积和总孔容逐渐增大。900 ℃下制得的活性炭具有超高比表面积, 达到3600 m2/g, 总孔容为3.164 cm3/g, 明显优于商用活性炭(YP-80, 比表面积为1310 m2/g, 总孔容为0.816 cm3/g)。具有最高比表面积的稻壳活性炭对亚甲基蓝的最大吸附量达到983 mg/g, 几乎是YP-80 (525 mg/g)的两倍。通过吸附动力学拟合, 吸附亚甲基蓝的过程与拟二级动力学模型一致, 表明该过程为化学吸附。
稻壳 超高比表面积 活性炭 吸附 亚甲基蓝 rice husk ultra-large specific surface area activated carbon adsorption methylene blue 
无机材料学报
2020, 36(8): 893
黄冲 1,2赵伟 1,*王东 1卜克军 1,2[ ... ]黄富强 1,3,*
作者单位
摘要
1 中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
2 中国科学院大学, 北京 100049
3 北京大学 化学与分子工程学院, 北京分子科学国家实验室与稀土材料化学及应用国家重点实验室, 北京 100871
通过固相反应法合成一系列插层化合物PdxNbSe2 (x=0~0.17)。它们与2H-NbSe2相同, 属于六方晶格, 空间群为P63/mmc。Pd占据NbSe2层间的八面体空位。随着Pd含量的增加, 晶格常数c线性增大, 而a几乎不变。X射线单晶衍射结果表明, Pd0.17NbSe2的晶格常数为a=b=0.34611(2) nm, c=1.27004(11) nm。每个Pd原子与六个Se原子键合形成[PdSe6]八面体来连接相邻的Nb-Se层, 使晶体结构变得更加稳定, 从而提高化合物的热稳定性。电学测试表明, 随着Pd含量的增加, PdxNbSe2的剩余电阻比减小。此外, 超导转变温度也随着Pd含量的增加而下降, 说明Pd的引入不利于NbSe2的超导态。
PdxNbSe2 过渡金属硫族化合物 晶体结构 超导 PdxNbSe2 transition metal dichalcogenide crystal structure superconducting 
无机材料学报
2020, 35(4): 505
黄谢意 1,2王鹏 2,3尹国恒 1张绍宁 1[ ... ]黄富强 1,3,4,*
作者单位
摘要
1 中国科学院 上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050
2 中国科学院大学, 北京 100049
3 上海科技大学 物理科学与技术学院, 上海 200050
4 北京大学 化学与分子工程学院, 稀土材料化学及应用国家重点实验室, 北京 100871
高活性催化剂是挥发性有机化合物(VOCs)催化氧化消除的关键因素。本研究通过简单的共沉淀法成功制备了具有高比表面积的非晶介孔磷掺杂氧化钛负载铂催化剂(Pt/ATO-P)。通过P掺杂, 既可获得非晶介孔结构, 又可获得高ATO-P比表面积(可达278.9 m2·g-1)。非晶介孔Pt/ATO-P催化剂显示出优异的VOCs催化氧化性能和良好的热稳定性。Pt/ATO-P样品在空速为36000 mL·h-1·g-1、甲苯浓度为10000 mL·m-3的反应条件下, 对甲苯催化氧化的T50T90(实现50%和90%转化率所需的温度)分别为130 ℃和140 ℃, 明显优于无磷催化剂Pt/TiO2。这些发现可以为拓展非晶介孔磷化材料在环境净化和能源转化等领域的应用提供重要参考。
非晶介孔材料 磷掺杂非晶氧化钛 铂纳米颗粒 甲苯催化氧化 VOCs消除 amorphous mesoporous structure phosphated TiO2 Pt nanoparticle toluene oxidation VOCs removal 
无机材料学报
2020, 35(4): 482
Author Affiliations
Abstract
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Molybdenum (Mo) thin films, most commonly used as electrical back contacts in Cu(In,Ga)Se2 (CIGS) solar cells, are deposited by rf and dc magnetron sputtering in identical systems to study the discrepancy and growth mechanisms of the two sputtering techniques. The results reveal that though different techniques generally deposit films with different characteristic properties, Mo films with similar structural and physical properties can be obtained at respective suitable deposition conditions. Highly adhesive and conductive Mo films on soda lime glass are further optimized, and the as-fabricated solar cells reach efficiencies as high as 9.4% and 9.1% without an antireflective layer.
310.1860 Deposition and fabrication 040.5350 Photovoltaic 350.6050 Solar energy 
Chinese Optics Letters
2016, 14(4): 043101
Author Affiliations
Abstract
1 CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
2 Inorganic Materials Analysis and Testing Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Highly conducting ZnO:Al (AZO) films are normally prepared through substrate heating and post-annealing in reducing atmosphere, which is deleterious to maintain the high transparency of films and the overall so-lar cell performance. Here we fabricate AZO films through one-step sputtering at room temperature using oxygen-deficient targets prepared via double crucible method. The best-performed AZO film achieves a low resistivity of 4.4 × 10-4 . cm, a high haze factor of 35.0%, and optimizes the efficiency of Cu (In, Ga)Se2 solar cell with a high value of 14.15%. This letter demonstrates that oxygen deficiency can induce high surface texture, conductivity, and boost solar cell performance.
000.1570 Chemistry 040.5350 Photovoltaic 160.4670 Optical materials 240.0310 Thin films 
Chinese Optics Letters
2014, 12(9): 093101
Author Affiliations
Abstract
1 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
2 CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
3 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Intrinsic zinc oxide films, normally deposited by radio frequency (RF) sputtering, are fabricated by direct current (DC) sputtering. The oxygen-deficient targets are prepared via a newly developed double crucible method. The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film. This is achieved by the widely used RF sputtering, which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells. The optimal ZnO film is used in a Cu (ln, Ga) Se2 (CIGS) solar cell with a high efficiency of 11.57%. This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.
氧化锌 薄膜 溅射 扩散阻挡层 太阳能电池 310.6845 Thin film devices and applications 310.7005 Transparent conductive coatings 310.1860 Deposition and fabrication 
Chinese Optics Letters
2011, 9(10): 103102

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!